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Outline

Overview of core concepts:

• Robot Motion

• Perception

• Localization and Mapping

• Navigation

Assumption: let’s talk about the simplest type of mobile robots, 
wheeled ground vehicles
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Robot Motion

Locomotion
Wheels

Configuration

Kinematics
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Robot Wheels

Four main types of wheels:

1. Standard wheel  - 2 DOF - rotation around the wheel axle 

2. Castor wheel – 2 DOF – rotation around the steering joing

3. Mecanum wheel (Swedish or Omni Wheel) – 3DOF –
rotation around wheel axle, rollers, contact poing, 45° or 90°

4. Ball or Spherical Wheel

1 2 3 4
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Mecanum wheel = omnidirectional
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Wheel Configuration

• How many wheels? 2,4,6,8?

• How many axes?

• What type of wheels?

Targets:

• Stability = robot does not fall → 2 wheels minimum, 3+ for “robust” 
solutions

• Maneuverability = do we have motion constraints? (e.g., car in 
parallel parking)

• Controllability = how difficult is to control movement?

Usually, maneuverability and controllability are inversely correlated
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Wheel Configuration

37

From Siegwart,Introduction to Autonomous Mobile Robots, MIT Press 2004



Wheel Configuration

Popular configurations:

- Limited number of wheels 

- Limited motors

- Simple
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From Siegwart,Introduction to Autonomous Mobile Robots, MIT Press 2004



Wheel Configuration

Omnidirectional with 3 motors 
and a simple architecture

39

From Siegwart,Introduction to Autonomous Mobile Robots, MIT Press 2004



Wheel Configuration

From [Siegwart, Introduction to 
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Wheel Configuration

From [Siegwart, Introduction to 
Autonomous Mobile Robots]

Car configuration – parallel 
parking
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Wheel Configuration

From [Siegwart, Introduction to 
Autonomous Mobile Robots]

Omnidirectional – 4 wheels 
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Kinematics 

• Describe how a mechanical system behaves, is needed to create 
control software for the robot

• Kinematic Model of the robot and Constraints
• Representing the robot position and the robot movement in a global and 

local reference frame

The robot pose is expressed as
[𝑥, 𝑦, 𝜃]

in the global reference frame
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Kinematics 

• Forward Kinematics computes the robot speed in the global 
reference frame given the spinning speed of each wheel 

• Inverse Kinematics compute the robot actuators parameters to 
reach a given configuration

• Each wheel configuration results into a set of constraints

Usually, robot DDOF are considered:
Differentialy Degrees of Freedom
(that are equal to the degree of 

mobility of the robot)

𝐷𝐷𝑂𝐹 ≤ 𝛿𝑚 ≤ 𝐷𝑂𝐹

44Sistemi Intelligenti Avanzati, 2020/21



Outline

Overview of core concepts:

• Robot Motion

• Perception

• Localization and Mapping

• Navigation

Assumption: let’s talk about the simplest type of mobile robots, 
wheeled ground vehicles

45Sistemi Intelligenti Avanzati, 2020/21



Perception: sensor types

• Proprioceptive
• Sensor measure values internal to the system as motor speed, wheel load, 

robot arm joint angles, battery voltage

• Exteroceptive
• Sensors acquire information from the robot’s environment as distance 

measurement, light intensity, sound amplitude = meaningful environmental 
features

46

Agent

environment

perceptions actions
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Perception: sensor types

• Passive sensors
• Measure ambient environmental energy entering the sensors, as 

microphones, temperature probes, cameras

• Active sensors
• Emit energy into the environment, then measure the environmental 

reaction. More control, more accuracy, but interference issues (and 
sometimes power)
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Agent

environment

perceptions actions
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Perception: sensor types

What to measure? What is the robot task?

• Vision

• Obstacle distance

• Position

• Environmental monitoring (ASV)

• Olfaction (e.g. inspection of chemical plants)

• Temperature (e.g. inspection of a server farm)

The most important sensors are those involved
in the robots’ mobility
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Sensors performance characterization

• Dynamic Range
ratio between maximum and minimum input value – usually in dB

• Resolution
minimum difference between two values that can be detected 

• Linearity
how the sensor respond to changing inputs

• Bandwith or Frequency
speed with which a sensor can provide a stream of readings 
number of measurements per seconds (in hz) 

These specs of the sensors are usually measured in labs – controlled 
enviromnets; 
however, often we need to identify how the sensor performs in its 
real-world deployment
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In Situ Sensors performance characterization

• Sensitivity:
measures how incremental change in the target input changes the output signal 

• Cross Sensitivity
sensitivity to environmental external parameters that are orthogonal to the 
target parameter; high cross-sensitivity is task-related and unwanted

• Error
difference between output and true value

• Accuracy
degree of conformity between sensor’s measurement and true value (usually %)

• Systematic Error
errors caused by factors that, theoretically, can be modeled; deterministic;
example: calibration errors, slopes, …

• Random Error
errors that cannot be predicted using a model nor can be mitigated; modeled as 
probabilistic process (stochastically)

• Precision
not to be confused with accuracy; reproducibility of the results: if the 
phenomena is the same, the measured value should be the same (this holds if I 
use several different sensors of the same type: I expect the same results from all 
of them)
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Challenges in Sensors modeling

• Blurring of systematic and random errors
active ranging sensors tend to have failures that are triggered by 
specific relative position of the sensor and of the environment (e.g. 
glass surfaces, mirrors, …)
During motion this happens at stochastic intervals
Moreover, robot usually have different and concurrent sensors
This, combined, is used to model error and to smooth their impact 
wrt the robot activity
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Challenges in Sensors modeling

• Multimodal error distribution
a common choice is to characterize the behavior of a sensor’s 
random error in terms of a probability distribution over various 
output values; diverging from the model can help to detect errors
(measuring the correct value is most probable)
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Wheel/Motor sensors

• Proprioceptive sensors used to measure the internal state and 
dynamics of the robot

• Optical encoders: measure the angular speed and position within a 
motor drive, or shaft of a wheel or steering mechanism

• Used for localization and to estimate the robot movements

• While the sensor itself could be accurate, the measure is inherently 
inaccurate (odometry) and needs integration (it measures the 
motor itself, what if a wheel slips? or if there is a slope?)
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Heading Sensors

• Compasses
• outdoor

• Ground-based-beacons
• GPS outdoor

• We can have similar solutions  indoor that usually requires other complex 
sensing capabilities (vision) or detection of NFC or RFID tags installed in the 
environment

• Gyroscope
• Usually combined with accelerometers in an IMU 

Inertial Measurements Unit
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Active ranging

• Most popular sensors in mobile robotics

• Usually have  a low price point and easily interpreted outputs

• Among them, time-of-flight sensors are  those commonly used
• 𝑑 = 𝑐 ∙ 𝑡

• d distance travelled

• c speed of wave propagation

• t  time of flight

1. Sonars

2. Laser Range Finder
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Ultrasonic Sensors - Sonars

• Cheap

• Not particularly accurate 

• Simple and interpretable measurements

• Good for proximity – obstacle avoidance

• Low range
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Laser range finders - Lidars

Time of Flight (ToF) sensor which is used to scan
the surrounding of the robot:

• Range = max perceivable distance

• Field of View  (FOV) =  degrees of a scan, from 
180° to 270°, 360°

• Angular resolution = how many points for 
each degree in a scan

• Frequency = how many scan per second
(1hz-50hz)

• 2D or 3D
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Laser range finders - Lidars 

Widely used in most indoor and outdoor robot 
applications as it is:

• Relatively cheap

• Easy and interpretable measures

• Robust wrt environmental changes 
(e.g. day, night, different seasons)

Laser range scanner are the most important 
sensor for most autonomous mobile robots
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Laser range finders - Lidars

Different tasks – different environment – different lidar types:
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Indoor lidars have a range from 3-5m 
to 10-20m, with a FOV of 180-270°.

They are relatively cheap (250€ for 
unreliable entry level lidars, 1000-
5000€ for reliable models). 

Outdoor lidars have a  range from 10 
to 30-50m, with a FOV of 180-360°.

Price is higher (5-15k €) but still 
reasonable, performance are good. 



Laser range finders - Lidars

In outdoor applications (autonomous vehicles), 3D lidars are a 
popular choice:

• Multi-layered lidar, not really 3D (from a single source)

• Usually 360° FOV

• Usually longer ranges (up to 200m)

• Expensive (10k-100k€)

• More data but also
more complex to interpret
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Vision

With the rising of Deep Learning, vision has becoming more and 
more important in robotics

Cameras provide a lot of data, are relatively cheap, but their output is 
also much more complex to interpret than the one of LIDARS.

• Limited range

• Distortion

• Reliability (day-night or light changes)

• Calibration
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Lidar VS Camera

Lidar

• Cheap

• Long range

• Up to 360° FOV

• Usually 2D

• Simple output

• Subject to reflections

• Measure the spatial surrounding 
of the robot

• Good to infer spatial occupancy, 
difficult to infer semantics
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Camera

• Cheap

• Close range

• Limited FOV

• 3D

• Complex output

• Subject to distortions, changing 
light conditions, …

• Measure the appearance of the 
surrounding of the robot

• Could be used to infer semantic 
knowledge



RGBD Cameras

• camera + depth information using an active sensor

• easy to reconstruct 3D image of the environment

• good for a lot of sensing tasks (e.g. human detection)

• widely used and useful, especially indoor

• limited range - depth (useless at 3/5m, sometimes even before)

• distortion 

• cheap (100€→1000€)

• usually camera is not 
particularly good
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Other sensors types

As robot can perform several different tasks, robots could be 
equipped with different type of sensors:

• Bumpers 

• Olfactometry 

• Chemicals

• Temperature sensors

• NFC readers

• RFID readers

• Radio – or other communication mechanisms…

• …

While you can expect to find one or more lidar/cameras on robot, 
other type of sensors are relative to the robot type/task.
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Sensors wrap-up

• Robot usually have several sensors that are used sometimes for 
acquiring data related to the same subproblem, sometimes for 
different subproblems

• Laser range finders and cameras are usually combined 

• More sensors = more data = more computational capacity required 
and more complexity (especially for vision)

• RGBD data are often a good compromise between data quality and 
complexity, but are rarely used as primary source of sensors

• There is a shift towards pure vision-based systems due also to the 
popularity of computer vision and deep learning, (however, this 
might be a trend)

• All robot data are defined by errors and uncertainty that have to be 
modeled (this is “easy” for lidars, but what about vision?)
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Perception and Feature Extraction
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To reduce the impact of inaccurate sensor readings, an idea is to 
extract features from one (or more) sensor data:

• Low level features: geometric primitives (lines)

• High level features: semantic labeling (object detection, people 
detection, …)

This depends on the sensors type / data quality, the environment, 
and the computational power required to process data

From Siegwart,Introduction to Autonomous Mobile Robots, MIT Press 2004
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Localization and Mapping

Robot mobility requires addressing a key property: uncertainty

• Environment: the world is unpredictable

• Sensors: sensors are limited, are subject to physical laws, and are 
subjects to noise and errors

• Robots: actuation is unpredictable, an action can not have the 
desired effect

• Models: we can model certain components of the robot, and also 
uncertainty; but models are inherenetly inaccurate, models are an 
abstraction

• Computation: robot are real time system, but real-time 
computation is often approximate
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Localization

Identifying the position of the robot in a known environment

Localization is usually seen as an estimation problem, where we infer 
the robot position from available data.
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Localization as estimation

Estimate the robot position from Data:

• Motion information:
• Proprioceptive sensors, odometry

• Environmental Measurements :
• Exteroceptive sensors as lidars, sonar, …

Usually solved as using probabilistic filtering
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Robot poses from time 0 to time t

Robot exteroceptive measurements from 
time 1 to time t

Motion commands (or proprioceptive 
measurements) from time 0 to time t

Robot pose



Motion model

The robot motion model  is the probability distribution of the robot 
pose at time t+1 given the robot pose and the expected robot 
movement, measured using motion or proprioceptive sensors:

𝑝 𝑥𝑟,𝑡+1 𝑥𝑟,𝑡, 𝑢𝑡

Assuming that the robot is at 𝑥𝑟,𝑡 and the control 𝑢𝑡 is applied, we 
estimate the expected robot position
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Motion model

Using only proprioceptive measurements, pose estimation error
increases
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From Thrun Burgard Fox, Probabilistic Robotics, MIT Press 2006



Measurement model
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It describes the probability of a robot measurement 𝑧𝑡

𝑝 𝑧𝑡 𝑥𝑟,𝑡

given the robot pose 𝑥𝑟,𝑡 considering possible noise regarding
sensors.

This is used to update the robot belief at time t

𝑏𝑒𝑙𝑡 𝑥𝑟 = 𝑝 𝑥𝑟,𝑡 = 𝑥𝑟 𝑧1:𝑡, 𝑢0:𝑡−1

The robot belief is a probability distribution over the space of all
possible locations of the current robot pose 



Localization example

Sistemi Intelligenti Avanzati, 2020/21 74

From Thrun Burgard Fox, Probabilistic Robotics, MIT Press 2006



Robot localization algorithms

The localization model assumes so to predict the current position 
from movement, to observe if the measurements are coherent with 
the estimated position, and to close the loop by updating the robot 
belief.

This is done usually by exploiting probabilistic filters:

Gaussian Filters: Extended Kalman Filter (EKF), 

Unscented Kalman Filter (UKF),

Extended Information Filter (EIF)

Non Parametric Filters: Histogram Filter (HF), 

Particle Filter (PF)
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Belief representation 

We can represent the belief as as a single hypothesis of by using 
multiple ones
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Map representation

According to the algorithm used for localization, the type of belief 
distribution, we can have multiple type of map representations
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From Siegwart,Introduction to Autonomous Mobile Robots, MIT Press 2004



Map representation

Usually a robot has different maps, at different level of abstraction; 
one of them is the one used for localization.

• Continuous vs discrete representation

• Occupancy vs topological maps

• Closed world assumption: only what there is in the map exists

• Static vs dynamic

• 2D or 3D 

A map, overall, is an approximation of the environment.
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Exact Cell Decomposition

This method use critical points to 
tesselate environment, obtaining 
a discrete topological map from a 
continuous one.

Assumption: the particular 
position of the robot in one of the 
area belonging to one node of the 
map does not matter, that matter 
is the ability of the robot to move 
from area to area.
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Fixed decomposition maps
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Discretization of the map into 
cells of the same size, 
representing occupancy.

Narrow passages disappear, but 
each cell has the same 
representation.

We obtain a grid map.
We can also assign different type 
of values to each cell (instead of 
1-0, e.g. occupancy probability)

From Siegwart,Introduction to Autonomous Mobile Robots, MIT Press 2004



Grid maps

Grid map are a popular approach 
widely adopted.
For saving space (without losing 
information) we can 
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Hybrid maps

We can have different layered maps, as topological and grid maps, 
combined, to allow the robot to do different tasks.
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SLAM

In all the previous examples, we have considered the map as known.
However, what if the robot is placed in an unknown environment?

How the map is done in the first place?

The robot needs at the same time to:

1. Map incrementally the environment integrating new observations

2. Localize itself its in the map

This is called Simultaneous Localization and Mapping (SLAM), a joint 
estimate of both the environment map and the robot pose.
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SLAM 101

During SLAM the robot 
integrates sensorial input by 
correcting odometry and 
sensing error to provide an 
estimate of the environment.

At the same time it estimates 
its pose in it.
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84
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MIT Press 2004



SLAM
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From Siegwart,Introduction to Autonomous Mobile Robots, MIT Press 2004



Navigation
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After we have a map, and the robot position, how to go from A to B?

• Path Planning

• Obstacle Avoidance

• Navigation Architecture



Path Planning approaches

Once we have the map, we have to compute a set of states for finding 
the path that the robot can execute. 

However, as we’ve seen, we have to provide a proper formulation for 
this problem:

• Road map: identify a set of routes within the free space

• Potential field: impose a mathematical function over the space

• Cell decomposition: discriminate between free and occupied cells
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Road map path planning

Idea: develop a network of roads / paths along the environment using 
a decomposition of the robot traversable free space.
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Visibility Graph Voronoi Decomposition

From Siegwart,Introduction to Autonomous Mobile Robots, MIT Press 2004



Potential field path planning

Idea: put an attractive artificial potential field on the goal, a repulsive 
one on obstacles, let the robot follow these simulated forces
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from https://www.cs.mcgill.ca/~hsafad/robotics/



Cell decomposition path planning

Sistemi Intelligenti Avanzati, 2020/21 91

From Siegwart,Introduction to Autonomous Mobile Robots, MIT Press 2004



Approximate cell decomposition

This is what is usually done: path planning on a grid map
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Here: A* for solving the search problem, Manhattan distance as h()



Obstacle avoidance

What happens if the robot is 
bigger than 1 cell (e.g., a 2x2 
cell)? Shall we allow 
trajectories that are that close 
to the obstacles?
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Several techniques are used for 
performing obstacle avoidance. 
Examples: inflating either the 
obstacle (considering the robot as 
a point) or the robot (allowing the 
robot to plan trajectories that 
goes across the obstacle.



Navigation Architecture

Navigation is a task that requires both hi-level planning and low-level 
control, reacting to changes in the environment.

We can organize modules of the robot according to different 
hierarchies, as performing a temporal decomposition:
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From Siegwart,Introduction to Autonomous Mobile Robots, MIT Press 2004
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